36 research outputs found

    Genome of the rams horn snail Biomphalaria straminea : an obligate intermediate host of schistosomiasis

    Get PDF
    This work was supported by the Hong Kong Research Grant Council Collaborative Research Fund (C4015-20EF), General Research Fund (14100919), NSFC/RGC Joint Research Scheme (N_CUHK401/21), and The Chinese University of Hong Kong Direct Grant (4053433, 4053489). Y.Y., W.L.S., C.F.W., S.T.S.L., and Y.L. were supported by the Ph.D. studentships of The Chinese University of Hong Kong. A.H. is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellowship (BB/N020146/1). T.B. is supported by a studentship from the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership (BB/M009122/1). M.E.A.R. is supported by a Ph.D. studentship from the School of Biology and St Andrews University.Background: Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection by Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea. Findings: Using a combination of Illumina short‐read, 10X Genomics linked‐read, and Hi‐C sequencing data, our 1.005 Gb B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mb. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia, and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating that this renowned insect hormonal system is also present in the lophotrochozoan lineage. Conclusion: This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of phenomena related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely.Publisher PDFPeer reviewe

    Microsatellite instability in benign skin lesions in hereditary non-polyposis colorectal cancer syndrome.

    Get PDF
    The coexistence of cutaneous and extra-cutaneous malignancies within one family could be explained by shared genetic mechanisms such as common tumor suppressor gene mutations or oncogene activation, as well as mutations in DNA repair genes. Hereditary non-polyposis colorectal cancer syndrome (HNPCC) and its variant Muir-Torre syndrome (MTS) are caused by germline DNA mismatch repair gene mutations. Colonic and endometrial tumors from HNPCC patients exhibit microsatellite instability (MSI), as do sebaceous lesions in MTS. We recruited individuals from cancer prone families to determine if MSI is found in benign and malignant skin lesions and to assess whether MSI in the skin is predictive of genomic instability with susceptibility to tumors characteristic of HNPCC. One hundred and fifteen benign, dysplastic, and malignant skin lesions from 39 cancer prone families were analyzed. Thirteen benign skin lesions from three individuals belonging to two HNPCC pedigrees showed MSI. No mutations in hMSH2 and hMLH1 were found in two of the three individuals with RER + skin lesions. We found MSI in non-sebaceous non-dysplastic skin lesions in HNPCC pedigrees. MSI was not found in skin lesions within other family cancer syndromes. These results have important clinical implications as the detection of MSI in prevalent readily accessible skin lesions could form the basis of noninvasive screening for HNPCC families. It may also be a valuable tool in the search for new mismatch repair genes

    Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome

    Get PDF
    This study was supported by the Hong Kong Research Grant Council General Research Fund (RGC GRF 14100919) and The Chinese University of Hong Kong (to JHLH). AH is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellowship (BB/N020146/1). TB is supported by a studentship from the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership (BB/M009122/1). YL was supported by a PhD studentship provided by The Chinese University of Hong Kong.Background: Homeobox-containing genes encode crucial transcription factors involved in animal, plant and fungal development, and changes to homeobox genes have been linked to the evolution of novel body plans and morphologies. In animals, some homeobox genes are clustered together in the genome, either as remnants from ancestral genomic arrangements, or due to coordinated gene regulation. Consequently, analyses of homeobox gene organization across animal phylogeny provide important insights into the evolution of genome organization and developmental gene control, and their interaction. However, homeobox gene organization remains to be fully elucidated in several key animal ancestors, including those of molluscs, lophotrochozoans and bilaterians. Results: Here, we present a high-quality chromosome-level genome assembly of the Hong Kong oyster, Magallana hongkongensis (2n = 20), for which 93.2% of the genomic sequences are contained on 10 pseudomolecules (~758Mb, scaffold N50 = 72.3Mb). Our genome assembly was scaffolded using Hi-C reads, facilitating a larger scaffold size compared to the recently published M. hongkongensis genome of Peng et al (2020), which was scaffolded using the Crassostrea gigas assembly. A total of 46,963 predicted gene models (45,308 protein coding genes) were incorporated in our genome, and genome completeness estimated by BUSCO was 94.6%. Homeobox gene linkages were analysed in detail relative to available data for other mollusc lineages. Conclusions: The analyses performed in this study and the accompanying genome sequence provide important genetic resources for this economically and culturally valuable oyster species, and offer a platform to improve understanding of animal biology and evolution more generally. Transposable element content is comparable to that found in other mollusc species, contrary to the conclusion of another recent analysis. Also, our chromosome-level assembly allows the inference of ancient gene linkages (synteny) for the homeobox-containing genes, even though a number of the homeobox gene clusters, like the Hox/ParaHox clusters, are undergoing dispersal in molluscs such as this oyster.Publisher PDFPeer reviewe

    Frailty and frailty screening: a qualitative study to elicit perspectives of people living with HIV and their health care professionals

    No full text
    Objectives People living with HIV (PLWH) are an ageing population, with an increasing prevalence of frailty. Management of frailty requires assessment, communication and information sharing with patients. However, evidence regarding the meaning of frailty for this population, and the acceptability of frailty screening is limited. This study aimed to explore perceptions of older PLWH and HIV professionals towards frailty and routine screening for frailty. Methods Data collection consisted of in-depth individual qualitative interviews with older PLWH and focus groups with HIV professionals purposively sampled from outpatient HIV clinics in London and Brighton, UK. Verbatim pseudonymised transcripts were analysed using reflexive thematic analysis supported by NVivo. Results 45 PLWH were interviewed, and 12 HIV professionals participated in two focus groups. Frailty was described as a series of losses around: mobility, social inclusion, independence and mental acuity, which could happen at any age. Regarding language, for PLWH explicitly using the word frail was acceptable during screening when approached sensitively, and alongside provision of information and �support to slow the progression of frailty. However HIV professionals described concerns using the word frail for fear of causing distress or offence. Conclusion Professionals described frailty in terms of functional deficits, while PLWH described a loss of personhood. Although there is a clear desire among PLWH to be informed of their frailty status, approaching conversations about frailty with understanding and compassion is vital. To gain the most from the screening, it is essential frailty status is shared alongside a clear plan of actionable steps in their care

    The genome of the deep-sea anemone <i>Actinernus</i> sp. contains a mega-array of ANTP-class homeobox genes

    Get PDF
    This study was supported by Hong Kong Research Grant Council Collaborative Research Fund CRF (grant no. C4015-20EF), General Research Fund GRF (grant no. 14100420), CUHK Direct Grant (grant nos. 4053489 and 4053547), Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (grant nos. HJ202101, SMSEGL20SC01 and SMSEGL20SC02) and Major Project of Basic and Applied Basic Research of Guangdong Province (grant no. 2019B030302004).Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.Publisher PDFPeer reviewe

    Millipede genomes reveal unique adaptations during myriapod evolution

    No full text
    The Myriapoda, composed of millipedes and centipedes, is a fascinating but poorly understood branch of life, including species with a highly unusual body plan and a range of unique adaptations to their environment. Here, we sequenced and assembled 2 chromosomal-level genomes of the millipedes Helicorthomorpha holstii (assembly size = 182 Mb; shortest scaffold/contig length needed to cover 50% of the genome [N50] = 18.11 Mb mainly on 8 pseudomolecules) and Trigoniulus corallinus (assembly size = 449 Mb, N50 = 26.78 Mb mainly on 17 pseudomolecules). Unique genomic features, patterns of gene regulation, and defence systems in millipedes, not observed in other arthropods, are revealed. Both repeat content and intron size are major contributors to the observed differences in millipede genome size. Tight Hox and the first loose ecdysozoan ParaHox homeobox clusters are identified, and a myriapod-specific genomic rearrangement including Hox3 is also observed. The Argonaute (AGO) proteins for loading small RNAs are duplicated in both millipedes, but unlike in insects, an AGO duplicate has become a pseudogene. Evidence of post-transcriptional modification in small RNAs—including species-specific microRNA arm switching—providing differential gene regulation is also obtained. Millipedes possesses a unique ozadene defensive gland unlike the venomous forcipules found in centipedes. We identify sets of genes associated with the ozadene that play roles in chemical defence as well as antimicrobial activity. Macro-synteny analyses revealed highly conserved genomic blocks between the 2 millipedes and deuterostomes. Collectively, our analyses of millipede genomes reveal that a series of unique adaptations have occurred in this major lineage of arthropod diversity. The 2 high-quality millipede genomes provided here shed new light on the conserved and lineage-specific features of millipedes and centipedes. These findings demonstrate the importance of the consideration of both centipede and millipede genomes—and in particular the reconstruction of the myriapod ancestral situation—for future research to improve understanding of arthropod evolution, and animal evolutionary genomics more widely. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes. This study describes the genome sequences of two millipedes, Helicorthomorpha holstii and Trigoniulus corallinus, revealing unique adaptations not found in other arthropods
    corecore